Apurinic/apyrimidinic endonucleases in repair of pyrimidine dimers and other lesions in DNA.
نویسندگان
چکیده
The characteristics of the nicks (single-strand breaks) introduced into damaged DNA by Escherichia coli endonucleases III, IV, and VI and by phage T4 UV endonuclease have been investigated with E. coli DNA polymerase I (DNA nucleotidyltransferase). Nicks introduced into depurinated DNA by endonuclease IV or VI provide good primer termini for the polymerase, whereas nicks introduced into depurinated DNA by endonuclease III or into irradiated DNA by T4 UV endonuclease do not. This result suggests that endonuclease IV nicks depurinated DNA on the 5' side of the apurinic site, as does endonuclease VI, whereas endonuclease III has a different incision mechanism. T4 UV endonuclease also possesses apurinic endonuclease activity that generates nicks in depurinated DNA with low priming activity for the polymerase. The priming activity of DNA nicked with endonuclease III or T4 UV endonuclease can be enhanced by an additional incubation with endonuclease VI and, to a lesser extent, by incubation with endonuclease IV. These results indicate that endonuclease III and T4 UV endonuclease (acting upon depurinated and irradiated DNA, respectively) generate nicks containing apurinic/apyrimidinic sites at their 3' termini and that such sites are not rapidly excised by the 3' leads to 5' activity of DNA polymerase I. However, endonuclease IV or VI apparently can remove such terminal apurinic/apyrimidinic sites as well as cleave on the 5' side of the unnicked sites. These results suggest roles for endonucleases III, IV, and VI in the repair of apurinic/apyrimidinic sites as well as pyrimidine dimer sites in DNA. Our results with T4 UV endonuclease suggest that the incision of irradiated DNA by T4 UV endonuclease involves both cleavage of the glycosylic bond at the 5' half of the pyrimidine dimer and cleavage of the phosphodiester bond originally linking the two nucleotides of the dimer. They also imply that the glycosylic bond is cleaved before the phosphodiester bond.
منابع مشابه
Repair of apurinic/apyrimidinic sites by UV damage endonuclease; a repair protein for UV and oxidative damage.
UV damage endonuclease (UVDE) initiates a novel form of excision repair by introducing a nick imme-diately 5" to UV-induced cyclobutane pyrimidine dimers or 6-4 photoproducts. Here, we report that apurinic/apyrimidinic (AP) sites are also nicked by Neurospora crassa and Schizosaccharomyces pombe UVDE. UVDE introduces a nick immediately 5" to the AP site leaving a 3"-OH and a 5"-phosphate AP. Ap...
متن کاملBlock of cleavage of ultraviolet-irradiated DNA with restriction endonucleases.
pBR322/Ultraviolet irradiation/Restriction endonuclease/Pyrimidine dimer Plasmid pBR322 DNA was irradiated with ultraviolet light at 254 nm and digested with various restric tion endonucleases. Analyses of the products suggested that the pyrimidine dimers which would have been formed just across the cutting site (Acc I), at the opposite position of the cutting site (Hind III, Eco RI, Bam HI), a...
متن کاملSelective inhibition by harmane of the apurinic apyrimidinic endonuclease activity of phage T4-induced UV endonuclease.
1-Methyl-9H-pyrido-[3,4-b]indole (harmane) inhibits the apurinic/apyrimidinic (AP) endonuclease activity of the UV endonuclease induced by phage T4, whereas it stimulates the pyrimidine dimer-DNA glycosylase activity of that enzyme. E. coli endonuclease IV, E. coli endonuclease VI (the AP endonuclease activity associated with E. coli exonuclease III), and E. coli uracil-DNA glycosylase were not...
متن کاملRepair of abasic sites by mammalian cell extracts.
Hamster cell extracts that perform repair synthesis on covalently closed circular DNA containing pyrimidine dimers, were used to study the repair of apurinic/apyrimidinic (AP) sites and methoxyamine (MX)-modified AP sites. Plasmid molecules were heat-treated at pH 5 and incubated with MX when required. The amount of damage introduced ranged from 0.2 to 0.9 AP sites/kb. Extracts were prepared fr...
متن کاملden V gene of bacteriophage T4 codes for both pyrimidine dimer-DNA glycosylase and apyrimidinic endonuclease activities.
Recent studies have shown purified preparations of phage T4 UV DNA-incising activity (T4 UV endonuclease or endonuclease V of phage T4) contain a pyrimidine dimer-DNA glycosylase activity that catalyzes hydrolysis of the 5' glycosyl bond of dimerized pyrimidines in UV-irradiated DNA. Such enzyme preparations have also been shown to catalyze the hydrolysis of phosphodiester bonds in UV-irradiate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 77 8 شماره
صفحات -
تاریخ انتشار 1980